922 research outputs found

    Control strategies for integration of electric motor assist and functional electrical stimulation in paraplegic cycling: Utility for exercise testing and mobile cycling

    Get PDF
    AIM: The aim of this study was to investigate feedback control strategies for integration of electric motor assist and functional electrical stimulation (FES) for paraplegic cycling, with particular focus on development of a testbed for exercise testing in FES cycling, in which both cycling cadence and workrate are simultaneously well controlled and contemporary physiological measures of exercise performance derived. A second aim was to investigate the possible benefits of the approach for mobile, recreational cycling. METHODS: A recumbent tricycle with an auxiliary electric motor is used, which is adapted for paraplegic users, and instrumented for stimulation control. We propose a novel integrated control strategy which simultaneously provides feedback control of leg power output (via automatic adjustment of stimulation intensity) and cycling cadence (via electric motor control). Both loops are designed using system identification and analytical (model-based) feedback design methods. Ventilatory and pulmonary gas exchange response profiles are derived using a portable system for real-time breath-by-breath acquisition. RESULTS:We provide indicative results from one paraplegic subject in which a series of feedback-control tests illustrate accurate control of cycling cadence, leg power control, and external disturbance rejection. We also provide physiological response profiles from a submaximal exercise step test and a maximal incremental exercise test, as facilitated by the control strategy. CONCLUSION: The integrated control strategy is effective in facilitating exercise testing under conditions of well-controlled cadence and power output. Our control approach significantly extends the achievable workrate range and enhances exercise-test sensitivity for FES cycling, thus allowing a more stringent characterization of physiological response profiles and estimation of key parameters of aerobic function.We further conclude that the control approach can significantly improve the overall performance of mobile recreational cycling

    Reduced stomatal density in bread wheat leads to increased water-use efficiency

    Get PDF
    Wheat is a staple crop, frequently cultivated in water-restricted environments. Improving crop water-use efficiency would be desirable if grain yield can be maintained. We investigated whether a decrease in wheat stomatal density via the manipulation of epidermal patterning factor (EPF) gene expression could improve water-use efficiency. Our results show that severe reductions in stomatal density in EPF-overexpressing wheat plants have a detrimental outcome on yields. However, wheat plants with a more moderate reduction in stomatal density (i.e. <50% reduction in stomatal density on leaves prior to tillering) had yields indistinguishable from controls, coupled with an increase in intrinsic water-use efficiency. Yields of these moderately reduced stomatal density plants were also comparable with those of control plants under conditions of drought and elevated CO2. Our data demonstrate that EPF-mediated control of wheat stomatal development follows that observed in other grasses, and we identify the potential of stomatal density as a tool for breeding wheat plants that are better able to withstand water-restricted environments without yield loss

    An experimental investigation into the effect two-phase flow induced vibrations have on a J-shaped flexible pipe

    Get PDF
    Multiphase flow inside of pipes occurs in a wide variety of engineering applications, including offshore deep-water oil and gas transport. Vibrations induced by the flow inside of the pipe can lead to its mechanical failure and thus lead to uncontrolled release of the fluids being transported. In subsea applications, flexible J-risers are often employed to deliver the produced fluids from the seafloor to the host platform. Despite the potentially significant liabilities associated with subsea hydrocarbon leaks, there has been a distinct lack of investigations into how flow induced vibrations in large scale, pressurised flexible J-risers can lead to system integrity loss. Previous investigations have generally focused on the response of rigid pipes or small scale, unpressurised flexible risers. This study presents an investigation into the response of a 10 m long, 50.8 mm internal diameter composite riser containing a tensile armour helical structure to a variety of two-phase, water-nitrogen flows at 10.8 barg of pressure and ambient temperature. High speed cameras were used to investigate the structure of the flow at either end of the flexible riser, whilst synchronised surface mounted strain gauges and accelerometers were used to investigate the response of the pipe. Time-averaged data were acquired to assess the general response of the pipe, whilst a statistical analysis of the fluctuations highlighted the movement of the pipe. One-dimensional and computational fluid dynamics simulations were used to define the experimental test matrix and provide further insight into the structure of the flow inside the J-riser. Single-phase gas flow was found not to cause the J-riser to move significantly, whilst multiphase flow led to significant in-plane movement of the pipe. Increasing the liquid flow rate (or decreasing the gas flow rate) increased the mean strain experienced by the pipe. At low gas flow rates, the pipe oscillated smoothly about its mean position, but at higher gas flow rates a violent intermittent whipping motion was observed. The latter produced large in-plane and out-of-plane movement of the pipe which could pose a threat to system integrity. This work offers new insights into fluid-structure interactions in large scale engineering applications, contributing to improved system design and control

    Increased efficiency of direct nanoimprinting on planar and curved bulk titanium through surface modification

    Get PDF
    In this work the direct transfer of nanopatterns into titanium is demonstrated. The nanofeatures are imprinted at room temperature using diamond stamps in a single step. We also show that the imprint properties of the titanium surface can be altered by anodisation yielding a significant reduction in the required imprint force for pattern transfer. The anodisation process is also utilised for curved titanium surfaces where a reduced imprint force is preferable to avoid sample deformation and damage. We finally demonstrate that our process can be applied directly to titanium rods

    Coarsening of Surface Structures in Unstable Epitaxial Growth

    Full text link
    We study unstable epitaxy on singular surfaces using continuum equations with a prescribed slope-dependent surface current. We derive scaling relations for the late stage of growth, where power law coarsening of the mound morphology is observed. For the lateral size of mounds we obtain ξt1/z\xi \sim t^{1/z} with z4z \geq 4. An analytic treatment within a self-consistent mean-field approximation predicts multiscaling of the height-height correlation function, while the direct numerical solution of the continuum equation shows conventional scaling with z=4, independent of the shape of the surface current.Comment: 15 pages, Latex. Submitted to PR

    Formation of the Stomatal Outer Cuticular Ledge Requires a Guard Cell Wall Proline-Rich Protein

    Get PDF
    Stomata are formed by a pair of guard cells which have thickened, elastic cell walls to withstand the large increases in turgor pressure that have to be generated to open the pore that they surround. We have characterised FOCL1, a guard cell-expressed, secreted protein with homology to hydroxyproline-rich cell wall proteins. FOCL1-GFP localises to the guard cell outer cuticular ledge and plants lacking FOCL1 produce stomata without a cuticular ledge. Instead the majority of stomatal pores are entirely covered-over by a continuous fusion of the cuticle, and consequently plants have decreased levels of transpiration and display drought tolerance. The focl1 guard cells are larger and less able to reduce the aperture of their stomatal pore in response to closure signals suggesting that the flexibility of guard cell walls is impaired. FOCL1 is also expressed in lateral root initials where it aids lateral root emergence. We propose that FOCL1 acts in these highly specialised cells of the stomata and root to impart cell wall strength at high turgor and/or to facilitate interactions between the cell wall and the cuticle

    A comparison of fragmenting lead-based and lead-free bullets for aerial shooting of wild pigs

    Get PDF
    In response to the health threats posed by toxic lead to humans, scavenging wildlife and the environment, there is currently a focus on transitioning from lead-based to lead-free bullets for shooting of wild animals. We compared efficiency metrics and terminal ballistic performance for lead-based and lead-free (non-lead) bullets for aerial shooting of wild pigs (Sus scrofa) in eastern Australia. Ballistic testing revealed that lead-based and lead-free bullets achieved similar performance in precision and muzzle kinetic energy (E-0) levels (3337.2 J and 3345.7 J, respectively). An aerial shooting trial was conducted with wild pigs shot with one type of lead-based and one type of lead-free bullets under identical conditions. Observations were made from 859 shooting events (n = 430 and 429 respectively), with a sub-set of pigs examined via gross post-mortem (n = 100 and 108 respectively), and a further sub-set examined via radiography (n = 94 and 101 respectively). The mean number of bullets fired per pig killed did not differ greatly between lead-based and lead-free bullets respectively (4.09 vs 3.91), nor did the mean number of bullet wound tracts in each animal via post-mortem inspection (3.29 vs 2.98). However, radiography revealed a higher average number of fragments per animal (median >300 vs median = 55) and a broader distribution of fragments with lead-based bullets. Our results suggest that lead-based and lead-free bullets are similarly effective for aerial shooting of wild pigs, but that the bullet types behave differently, with lead-based bullets displaying a higher degree of fragmentation. These results suggest that aerial shooting may be a particularly important contributor to scavenging wildlife being exposed to lead and that investigation of lead-free bullets for this use should continue

    Charge order and low frequency spin dynamics in lanthanum cuprates revealed by Nuclear Magnetic Resonance

    Full text link
    We report detailed 17O, 139La, and 63Cu Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) measurements in a stripe ordered La1.875Ba0.125CuO4 single crystal and in oriented powder samples of La1.8-xEu0.2SrxCuO4. We observe a partial wipeout of the 17O NMR intensity and a simultaneous drop of the 17O electric field gradient (EFG) at low temperatures where the spin stripe order sets in. In contrast, the 63Cu intensity is completely wiped out at the same temperature. The drop of the 17O quadrupole frequency is compatible with a charge stripe order. The 17O spin lattice relaxation rate shows a peak similar to that of the 139La, which is of magnetic origin. This peak is doping dependent and is maximal at x ~ 1/8.Comment: submitted to European Physical Journal Special Topic

    On The Mobile Behavior of Solid 4^4He at High Temperatures

    Full text link
    We report studies of solid helium contained inside a torsional oscillator, at temperatures between 1.07K and 1.87K. We grew single crystals inside the oscillator using commercially pure 4^4He and 3^3He-4^4He mixtures containing 100 ppm 3^3He. Crystals were grown at constant temperature and pressure on the melting curve. At the end of the growth, the crystals were disordered, following which they partially decoupled from the oscillator. The fraction of the decoupled He mass was temperature and velocity dependent. Around 1K, the decoupled mass fraction for crystals grown from the mixture reached a limiting value of around 35%. In the case of crystals grown using commercially pure 4^4He at temperatures below 1.3K, this fraction was much smaller. This difference could possibly be associated with the roughening transition at the solid-liquid interface.Comment: 15 pages, 6 figure

    3-Methoxybutan-2-one as a sustainable bio-based alternative to chlorinated solvents

    Get PDF
    Methylation of acetoin with dimethyl carbonate was performed in a sustainable one-step process, with improved process mass intensity (PMI) and atom economy compared to previously published methods. The resulting product, 3-methoxybutan-2-one (MO) was successfully evaluated as a bio-based solvent, while both Kamlet–Taft solvatochromic parameters and Hansen solubility parameters demonstrate its potential viability in the substitution of chlorinated solvents. MO exhibited a low peroxide forming potential and a negative Ames mutagenicity test and was successfully used as a solvent in a Friedel–Crafts acylation (79% yield compared to 77% in dichloromethane) and for N-alkylations. MO is a renewable oxygenated solvent, with the potential ability to substitute carcinogenic halogenated solvents in some applications
    corecore